skip to main content


Search for: All records

Creators/Authors contains: "Martin, Caleb"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A series of anionic group 6 tricarbonyl and neutral rhodium dicarbonyl complexes featuring a boratabenzene (L1, with a phenyl on boron, a trimethylsilyl group on the adjacent carbon and methyl groups on the other carbons) and a borataphenanthrene ligand (L2, with a phenyl group on boron and a trimethylsilyl group on the adjacent carbon) are prepared. The donor ability of the boracyclic ligands is evaluated experimentally and theoretically by the stretching frequencies of the CO ancillary ligands. Overall, the donor ability of the ligands falls into the following trend: L1 > cyclopentadienyl > L2 > mesitylene. 
    more » « less
  2. The reaction of Ph 3 PAuN 3 with 9-Ph-9-borafluorene resulted in complexation of the azide to boron while a gold acetylide reacted with 9-Ph-9-borafluorene to insert the acetylide carbon to access a six-membered boracycle with an exocyclic double bond. 
    more » « less
  3. Nickel K- and L 2,3 -edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L 2,3 -edge XAS reveals that the physical d-counts of the formally Ni IV compounds measured lie well above the d 6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF 6 2− is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d 6 Ni IV center. The reactivity of Ni IV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers. 
    more » « less
  4. Abstract

    The Lewis superacid, bis(1‐methyl‐ortho‐carboranyl)borane, is rapidly accessed in two steps. It is a very effective hydroboration reagent capable of B−H addition to alkenes, alkynes, and cyclopropanes. To date, this is the first identified Lewis superacidic secondary borane and most reactive neutral hydroboration reagent.

     
    more » « less
  5. Abstract

    The Lewis superacid, bis(1‐methyl‐ortho‐carboranyl)borane, is rapidly accessed in two steps. It is a very effective hydroboration reagent capable of B−H addition to alkenes, alkynes, and cyclopropanes. To date, this is the first identified Lewis superacidic secondary borane and most reactive neutral hydroboration reagent.

     
    more » « less
  6. Lithium was deposited onto lithium chloride powder in a ∼5% weight/weight ratio. This material serves as a source of elemental lithium with benefits over bulk lithium alternatives including increased mass to facilitate measurement for small scale reactions and increased surface area. The Li/LiCl material is applied in the synthesis of a dilithiobutadienide that is transformed into a stannole with a drastic decrease in reaction time and notable increase in yield over commercial lithium granules. 
    more » « less
  7. The stoichiometric reactions of antimony trichloride, trimethylsilyl trifluoromethanesulfonate, and diiminopyridine ligands lead to the formation of N , N ′, N ′′-chelated SbCl 2 cationic complexes. Methyl and phenyl substituents on the imine carbons of the ligand yielded structures with a lone pair on antimony and the hydrogen substituted variant was notably different as it forms a Menshutkin complex with meta -xylene in the solid-state. 
    more » « less